
S2 Text

Second stage ranking by L2R

Once the prior relevance is calculated, it is used to pre-rank documents before
the L2R layer in the second stage. BM25F is a robust metric that yields a
good prior ranking such that there is no need to process all returned documents
through L2R as this would be too expensive computationally. The reason we
selected LambdaMART over other L2R approaches is that it is fast enough for a
production environment, especially compared to list-wise L2R approaches which
evaluate and compare entire lists of results [1, 2, 3]. Instead, LambdaMART
is a pair-wise L2R framework, based on gradient boosted regression trees, that
optimizes a list-wise cost metric. In our case, we chose NDCG@20 as described
in S5 Text.

Suppose the training dataset consists of a set of PubMed queries Q =
{q1, ..., qN}, and each query matches a set of citations D = {d1, ..., dK} with
their respective relevance labels L = {l..., lK} (see S4 Text for their calcula-
tion). Each document di is a feature vector in R179 – we have 179 features. The
objective of the ranker is to find the function f : R179 ⇒ R such that documents
ordered according to their predicted scores S = {s1 = f(d1), ..., sK = f(dK)} in
descending order, with the resulting ranking the closest to that of L, i.e. to the
gold standard.

The objective of LambdaMART is to determine how to score documents to
minimize the distance, based on the selected cost metric, between the predicted
ranking and the gold standard. Specifically, it focuses on learning how docu-
ments should be ranked. Say LambdaMART is comparing two documents du, dv
with relevance labels lu > lv. The objective function [4] is defined as:

Ouv = −ouv + log(1 + eouv), (1)

where ouv = su − sv. This idea was first introduced in RankNet [5], which
optimizes for the number of pairwise errors in ranking. Later on, LambdaRank,
a precursor to LambdaMART, was based on the empirical observation that
weighting the derivative of this cost by the change in NDCG obtained by swap-
ping du and dv, results in a system that optimizes for NDCG. Therefore, in
LambdaMART, a weighted derivative of the objective function is then used
to identify whether documents should be swapped in order to maximize the
NDCG@k score (the ranking quality at rank k):

λuv = |∆NDCG@k(su, sv)| × δOuv

δouv
, (2)

δOuv

δouv
=
δOuv

δsu
= − 1

1 + eouv
, (3)

∆NDCG@k(su, sv) = N(2lu − 2lv)

(
1

log(1 + t(du))
− 1

log(1 + t(dv))

)
, (4)

1

where t(·) is the rank of a document. Although many different metrics could
be optimized for ranking, NDCG yielded the best ranking – quality results in our
experiments. By integrating NDCG when calculating the λ’s, LambdaMART is
able to learn both the distance each document score should be moved as well as
the direction. A gradient is then calculated for each document du by summing
the gradients associated with all pairs of documents (du, dv) for a given query:

λu =
∑

v∈(du,dv):lu 6=lv

λuv. (5)

At each training iteration, LambdaMART builds a gradient boosted regres-
sion tree that guides ranking by promoting or demoting documents based on
the direction and distance provided by their λ-gradient. The combination of all
weak learners (boosted trees) results in a robust and efficient ranking model.

References

[1] M. Taylor, J. Guiver, S. Robertson, and T. Minka. Softrank: optimizing
non-smooth rank metrics.In Proceedings of the 2008 International Confer-
ence on Web Search and Data Mining, pages 77–86. ACM, 2008.

[2] J. Xu and H. Li. Adarank: a boosting algorithm for information retrieval.
In Proceedings of the 30th annual international ACM SIGIR conference on
Research and development in information retrieval, pages 391–398. ACM,
2007.

[3] F. Xia, T.-Y. Liu, J. Wang, W. Zhang, and H. Li. Listwise approach to
learning to rank: theory and algorithm.In Proceedings of the 25th interna-
tional conference on Machine learning, pages 1192–1199. ACM, 2008.

[4] K. M. Svore, M. N. Volkovs, and C. JC Burges.Learning to rank with mul-
tiple objective functions.In Proceedings of the 20th international conference
on World wide web, pages 367–376. ACM, 2011.

[5] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and
G. Hullender.Learning to rank using gradient descent.In Proceedings of the
22nd international conference on Machine learning, pages 89–96. ACM,
2005.

2

